References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Barnes, J. C., Paton, J. D., Damewood, J. R. Jr & Mislow, K. (1981). J. Org. Chem. 46, 4975–4979.
- Burzlaff, H. & Rothammel, W. (1989). ATARI CRYSTAN88. Proceedings of the 3rd Workshop Computer in der Chemie, edited by G. Gauglitz. Berlin: Springer Verlag.
- Domininghaus, H. (1988). Die Kunststoffe und ihre Eigenschaften, 3rd edition, pp. 549–561. Düsseldorf: VDI-Verlag.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 281, expression (22). Copenhagen: Munksgaard.
- Le Fèvre, R. J. W. & Saxby, J. D. (1966). J. Chem. Soc. B, pp. 1064-1066.
- Montaudo, G., Caccamese, S. & Finocchiaro, P. (1971). J. Am. Chem. Soc. 93, 4202-4213.
- Naik, H. A., Parsons, I. W., McGrail, P. T. & MacKenzie, P. D. (1991). Polymer, 32, 140-145.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1985). CRYSTALS User Guide. Chemical Crystallography Laboratory, University of Oxford, England.

Acta Cryst. (1996). C52, 2305-2307

Diethyl 5-Bis(diphenylphosphinoyl)methyl-2-hydroxy-3-*tert*-butylphenylphosphonate Hydrate at 173 K

MATTHIAS RAMM^{*a*} AND BURKHARD COSTISELLA^{*b*}

^aFreie Universität, Institut für Kristallographie, Takustrasse 6, D-14195 Berlin, Germany, and ^bInstitut für Angewandte Chemie, D-12484 Berlin, Germany. E-mail: ramm@chemie. fu-berlin.de

(Received 29 January 1996; accepted 18 March 1996)

Abstract

The title compound, $C_{39}H_{43}O_6P_3$. H_2O , shows an intramolecular hydrogen bond between the O1 and O2 atoms. It interacts *via* two further intermolecular hydrogen bonds involving one water molecule.

Comment

The addition of diethylphosphite (DEP) to phosphinoxidoquinonmethide, (1), by splitting off isobutene, led to the phosphorylated aromatic product, (2). The structure of (2) was proven by detailed NMR studies (Gross, Keitel & Costisella, 1991). Surprisingly, the ¹H NMR signal of the OH group was shifted strongly to lower field compared with very similar compounds (Gross, Keitel & Costisella, 1991). The shift to lower field can be explained by the neighbourhood of the electronwithdrawing phosphonate group and the possibility of an

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved intramolecular hydrogen bond between the OH proton and the phosphoryl O atom of the phosphonate group. The aim of the present structure analysis was therefore to prove whether the presumed intramolecular hydrogen bond exists or not.

Previous X-ray structure analyses of related compounds at room temperature (Ramm & Schulz, 1990; Ramm, 1993) showed that due to high thermal motion the positions of the O-C₂H₅ groups could not be determined accurately. The data collection was therefore performed at 173 K. The P atoms form distorted tetrahedra. They are coordinated either by three O atoms and one C atom (P1) or by one O atom and three C atoms (P2 and P3). The tetrahedral angles around P2 and P3 show the same systematic deviations from the ideal value. The three angles enclosing the P==O double bond are larger, the other three being smaller. This corresponds to other phosphorus-containing compounds (Kulpe & Seidel, 1979; Ramm, Costisella & Gross, 1995). Only the O2-P1-O3 bond angle deviates from this array. This can be attributed to the participation of the O2 atom in an intramolecular hydrogen bond with O1 resulting in a six-membered ring [O1...O2

Fig. 1. ORTEPII (Johnson, 1971) drawing of the asymmetric unit of the title compound showing 50% probability displacement ellipsoids. Only H atoms participating in hydrogen bonds are drawn. Dashed lines represent hydrogen bonds.

Acta Crystallographica Section C ISSN 0108-2701 © 1996

0.068(1)

0.0350 (8) 0.0322 (7)

0.0320(7)

0.0417 (9)

0.0368 (8)

0.028(1)

0.026(1)

0.028(1)

0.029(1)

0.029(1)

0.0264 (9)

0.027(1)

0.037(1)

0.050(2)

0.053 (2) 0.050(2)

0.042(1)

0.067 (2)

0.046(1)

0.065 (2)

0.034(1)

0.040(1)

0.048(1)

0.052 (2)

0.051 (2)

0.042(1) 0.030(1)

0.033 (1)

0.043(1)

0.048(1)

0.046(1)

0.038(1)

0.032(1)

0.037(1)

0.043(1)

0.050(1) 0.047(1)

0.038(1)

0.031(1)

0.035(1)

0.049(1) 0.052(1)

0.047(1)

0.039(1)

1.486 (7)

1.509 (7)

1.373 (7)

1.399 (6)

1.392 (7)

1.377 (6)

1.377 (7)

1.379 (7)

1.396 (6) 1.391 (5)

1.404 (6)

1.381 (7)

1.370(7) 1.387 (6)

1.401 (6)

1.393 (5)

1.389 (7)

1.390(7)

1.367 (7)

1.370(7)

1.392 (6)

1.402 (6)

1.376 (6)

1.405 (7)

1.376 (7)

1.372 (6)

111.2 (3)

107.9 (4)

111.0 (4)

107.1 (4)

C30-C31

C31-C32

C32-C33

C34-C35

C34-C39

C35-C36

C36-C37 C37-C38

C38-C39

C4-C8-C11

C9-C8-C10

C9-C8-C11

C10-C8-C11

1.385 (5)

1.387 (5)

1.425 (5)

1.539 (6) 1.401 (5)

1.398 (5)

1.526 (6)

1.534 (6)

1.528 (7)

108.9 (2)

115.8 (2)

111.2 (2)

102.6(1)

C2-C7

C3-C4

C4--C5

C4---C8

C5-C6

C6-C7

C8-C9

C8-C10

C8-C11

O2-P1-O3

O2-P1-O4

O2-P1-C6

O3-P1-O4

2.639 (4), H1O···O2 1.69	(5) Å and O1—H1O···O2	01 <i>W</i>	0.2803 (2)	0.5583 (2)	0.4178 (3)
174 (6)°]. The water molecule interacts via two inter-			-0.0222 (2)	0.4045 (2)	0.2697 (2)
molecular bydrogen bonds with the C H O D mole			0.0322 (2)	0.4427 (2)	0.4369 (2)
1000000000000000000000000000000000000			0.1304(2) 0.1816(2)	0.4412(2)	0.2979 (2)
cule; $O1W \cdots O52./15(5)$, $H10W \cdots O51./39(3)$ A and			0.2722 (2)	0.6654 (2)	0.2579 (2)
O1W—H1 OW ···O5 145.1 (2)°; $O1W$ ···O6 2.825 (5),			0.1302 (2)	0.7479 (2)	0.3126 (3)
H2OW $\cdot \cdot \cdot O6 = 1.759(3)$ Å and $O1W$ —H2OW $\cdot \cdot \cdot O6$			0.0638 (2)	0.6872 (2)	0.2941 (2)
158.7 (2)°. An eight-memb	ered ring is formed in this	C3	-0.0099 (2)	0.7078 (2)	0.2476 (3)
way Surprisingly these by	drogen bonds do not influ	C4	-0.0698(2)	0.6553 (2)	0.2182 (3)
way. Surprisingly, these hydrogen bonds do not innu-			-0.0548(2)	0.5762 (2)	0.2414 (3)
ence the systematic deviations of the bond angles around			0.0775(2)	0.6099 (2)	0.2912(3) 0.3150(3)
the P2 and P3 atoms.			-0.1474(3)	0.6789 (2)	0.1592 (3)
		C9	-0.1467 (3)	0.6394 (3)	0.0566 (3)
T • (•		C10	-0.1482 (3)	0.7665 (3)	0.1417 (4)
Experimental		C11	-0.2257 (3)	0.6589 (3)	0.2174 (4)
The title compound was recrys	stallized from ethyl acetate	C12	0.0898 (3)	0.4756 (3)	0.5092 (3)
The due compound was reery.	stamzed from entyr accure.		0.0713(3)	0.4396 (4)	0.6081 (4)
Crystal data		C14	0.1008(3) 0.2531(3)	0.4428 (3)	0.1930 (3)
		C16	0.0797(2)	0.7950 (3)	0.5145 (3)
$C_{39}H_{43}O_6P_3.H_2O$	Cu $K\alpha$ radiation	C17	0.0251 (3)	0.8476 (3)	0.4754 (3)
$M_r = 718.70$	$\lambda = 1.54178 \text{ A}$	C18	-0.0321 (3)	0.8830 (3)	0.5383 (3)
Orthorhombic	Cell parameters from 25	C19	-0.0331 (3)	0.8661 (3)	0.6395 (3)
$P2_12_12_1$	reflections	C20	0.0218(3)	0.8138 (3)	0.6795 (3)
a = 16.233 (2) Å	$\theta = 36-46^{\circ}$	C21	0.0780(3)	0.8158 (2)	0.0173 (3)
b = 17.313(2) Å	$\mu = 1.85 \text{ mm}^{-1}$	C23	0.2372(2)	0.8947(3)	0.4410(3)
c = 13.300(1) Å	T = 173 K	C24	0.3036 (3)	0.9455 (3)	0.4554 (3)
$V = 3737.7(7) Å^3$	Plate	C25	0.3777 (3)	0.9159 (3)	0.4888 (3)
7 = 3757.7(7) fr	$0.32 \times 0.32 \times 0.14$ mm	C26	0.3877 (2)	0.8385 (3)	0.5065 (3)
$D = 1.277 \text{ Mg m}^{-3}$		C27	0.3227 (2)	0.7879 (3)	0.4911 (3)
$D_x = 1.277$ Wig in	Colouriess	C20	0.2737(2) 0.2373(3)	0.8202 (2)	0.2144(3) 0.1800(3)
D_m not measured		C30	0.2852(3)	0.9549(3)	0.1809(3) 0.1707(3)
Data callesting		C31	0.3685 (3)	0.9527 (3)	0.1947 (3)
Data collection		C32	0.4032 (3)	0.8855 (3)	0.2282 (4)
Enraf–Nonius CAD-4	$\theta_{\rm max} = 70^{\circ}$	C33	0.3574 (2)	0.8194 (3)	0.2376 (3)
diffractometer	$h = 0 \rightarrow 19$	C34	0.1699 (2)	0.7108 (2)	0.1063 (3)
$\omega/2\theta$ scans	$k = -18 \rightarrow 0$	C35	0.1929(2) 0.1599(3)	0.6425 (3)	0.0588(3)
Absorption correction:	$l = -16 \rightarrow 0$	C37	0.1027(3)	0.0220(3)	-0.0327(3) -0.0780(3)
none	2 standard reflections	C38	0.0788 (3)	0.7390 (3)	-0.0306(3)
3774 measured reflections	frequency: 60 min	C39	0.1118 (3)	0.7594 (3)	0.0606 (3)
3774 independent reflections	intensity decay: 4.0%				٥
3443 observed reflections	intensity decay. 4.0%		Table 2.	Geometric pa	rameters (Å, °)
$[F > 3\sigma(F)]$		P1-02		1.488 (3) C1	2
[r > 50(r)]		P1-03		1.564 (3) C1-	4
Pafinament		P1-04		1.562 (3) C1	5C17
Kejmemeni		P1C6		1.774 (4) C1	5-C21
Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.15$	P2-05		1.475 (3) C1	7C18
R = 0.044	$\Delta \rho_{\rm max} = 0.270 \ {\rm e} \ {\rm \AA}^{-3}$	P2-C16		1.851 (4) CI	S-C19
wR = 0.059	$\Delta \rho_{\rm min} = -0.092 \ {\rm e} \ {\rm \AA}^{-3}$	P2-C22		1.801(4) C1)
S = 2.274	Extinction correction:	P3-06		1.494 (3) C2	2—C23
3443 reflections	Zachariasen (1963)	P3-C1		1.847 (4) C2	2—C27
617 parameters	Extinction coefficient	P3-C28		1.806 (4) C2	3—C24
All H atoms located in the	$5 47333 \times 10^{-7}$	P3-C34		1.810 (4) C24	4—C25
difference synthesis ware	Atomic southering factors	01-05		1.351 (4) C2:	0
refined execution U10W	from International Tabl	04-014		1.455 (5) C20	S-C29
and HOOW for militation	from international lables	C1-C2		1.525 (5) C2	3-C33
and H2OW for which only	jor X-ray Crystallography	C2C3		1.393 (5) C2	

U's were refined $w = 1/\sigma^2(F)$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

(1974, Vol. IV)

$$U_{\rm eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	U_{eq}
P1	0.03744 (6)	0.45655 (6)	0.32086 (7)	0.0281 (3)
P2	0.16220 (6)	0.74919 (6)	0.44614 (7)	0.0297 (3)
P3	0.21762 (6)	0.73058 (6)	0.22661 (7)	0.0276 (3)
01	-0.1130 (2)	0.52400 (2)	0.2160 (2)	0.0374 (8)

O3—P1—C6	110.9 (2)	O3-C12-C13	106.9 (4)
04P1C6	107.1 (2)	O4-C14-C15	106.8 (3)
05-P2-C1	114.6 (2)	P2-C16-C17	125.5 (3)
O5-P2-C16	111.2 (2)	P2-C16-C21	114.5 (3)
O5-P2-C22	112.0 (2)	C17-C16-C21	119.8 (4)
C1-P2-C16	106.3 (2)	C16-C17-C18	119.7 (4)
C1-P2-C22	108.4 (2)	C17C18C19	120.1 (4)
C16—P2—C22	103.6 (2)	C18-C19-C20	120.6 (4)
06-P3-C1	114.0 (2)	C19-C20-C21	119.5 (4)
O6-P3-C28	112.0 (2)	C16-C21-C20	120.2 (4)
O6-P3-C34	110.9 (2)	P2-C22-C23	121.7 (3)
C1-P3-C28	107.7 (2)	P2-C22-C27	118.9 (3)
C1-P3-C34	104.4 (2)	C23—C22—C27	119.4 (3)
C28-P3-C34	107.4 (2)	C22-C23-C24	120.3 (4)
P103C12	123.8 (3)	C23-C24-C25	118.7 (5)
P1-04-C14	120.5 (3)	C24—C25—C26	121.4 (4)
P2-C1-P3	112.4 (2)	C25C26C27	120.2 (4)
P2-C1-C2	111.2 (2)	C22-C27-C26	120.0 (4)
P3-C1-C2	109.3 (2)	P3-C28-C29	123.1 (3)
C1C2C3	120.1 (3)	P3-C28-C33	117.6 (3)
C1C2C7	121.3 (3)	C29-C28-C33	119.4 (4)
C3—C2—C7	118.3 (3)	C28—C29—C30	119.6 (4)
C2-C3-C4	124.0 (3)	C29-C30-C31	120.0 (5)
C3-C4-C5	116.7 (3)	C30-C31-C32	119.9 (5)
C3-C4-C8	122.9 (3)	C31—C32—C33	121.1 (4)
C5-C4-C8	120.4 (3)	C28—C33—C32	120.0 (4)
O1-C5-C4	118.0(3)	P3-C34-C35	116.6 (3)
01-C5-C6	121.9 (3)	P3—C34—C39	123.9 (3)
C4-C5-C6	120.1 (3)	C35-C34-C39	119.6 (4)
P1-C6-C5	120.8 (3)	C34—C35—C36	121.1 (4)
P1C6C7	118.6 (3)	C35—C36—C37	118.5 (4)
C5-C6-C7	120.6 (3)	C36—C37—C38	120.6 (4)
C2-C7C6	120.2 (3)	C37—C38—C39	120.8 (4)
C4—C8—C9	109.3 (3)	C34—C39—C38	119.4 (4)
C4-C8-C10	110.3 (3)		

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: PROCESS in MolEN (Fair, 1990). Program(s) used to solve structure: MULTAN11/82 (Main et al., 1982). Program(s) used to refine structure: LSFM in MolEN. Software used to prepare material for publication: PLATON (Spek, 1990).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: KA1188). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Gross, H., Keitel, I. & Costisella, B. (1991). Phosphorus Sulfur Silicon, 62, 35-45.
- Johnson, C. K. (1971). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
- Kulpe, S. & Seidel, I. (1979). Krist. Tech. 14, 1089-1096.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
- Ramm, M. (1993). Unpublished results.
- Ramm, M., Costisella, B. & Gross, H. (1995). Acta Cryst. C51, 274-277.
- Ramm, M. & Schulz, B. (1990). Unpublished results.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

© 1996 International Union of Crystallography Printed in Great Britain - all rights reserved

Acta Cryst. (1996). C52, 2307-2309

Isopropylamidinium Chloride

JAMES BARKER^a AND HAROLD R. POWELL^b

^aThe Associated Octel Company Ltd, PO Box 17, R & D Laboratories, Oil Sites Road, Ellesmere Port, South Wirral L65 4HF, England, and ^bCambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England. E-mail: hrp1000@cus.cam.ac.uk

(Received 8 August 1994; accepted 27 February 1996)

Abstract

The amidine fragment in each of the two independent molecules of $C_4H_{11}N_2^+$. Cl^- is essentially planar; the bond angles around the central C atom sum to 360.0(4)° in each case. This, and the almost equal C-N bond lengths [1.299 (6) to 1.320 (5) Å], indicate that an amidinium salt has been formed.

Comment

A number of papers concerning the structures of amidines have appeared (Tykarska, Jaskolski & Kosturkiewicz, 1986; Thailambal, Pattabhi & Guru Row, 1986; Barker, Gould & Kilner, 1987; Barker & Kilner, 1993; Alcock, Barker & Kilner, 1988; Alcock, Barker, Blacker, Errington & Wallbridge, 1994; Dehnicke, 1990), reflecting the widespread interest in such compounds because of their pharmaceutical and biological importance, bonding characteristics and ligand properties. The structural investigation of the title compound, (I), was undertaken to investigate the effect of alkyl substitution on the central amidine fragment.

The asymmetric unit consists of two molecules with N-H. Cl hydrogen bonding present (Fig. 1), as it is throughout the structure (Fig. 2). The skeletal C-N bond lengths are clearly not differentiated in terms of single- or double-bond character, with mean C-N bond lengths of 1.317(5) and 1.300(6) Å for each molecule, respectively. They are similar to those found for acetamidinium chloride [1.305(2) and 1.310(3) Å; Cannon, White & Willis, 1976] and bis(acetamidinium)carbonate monohydrate [1.308(5) and 1.315 Å; Norrestam, 1984]. They differ somewhat to those found for acetamidine [1.298(1) and 1.344(1) Å; Norrestam, Mertz & Crossland, 1983], N,N-diphenylbenzamidine [1.302(7) and 1.360(8) Å; Alcock et al., 1988] and